
46. Друза красного **гроссуляра** и зеленоватого **диопсида** с белым кальцитом. 5.5 x 4 см. Образец: В.А. Пелепенко.

анная глава написана по материалам многочисленных работ различных исследователей, охватывающих значительный временной отрезок от 1907 года по настоящие дни.

Первый сводный список минералов для Баженовского месторождения хризотил-асбеста (Золоев и др., 1985) охватывал только около 60 видов. В 1997 году автором был составлен кадастр минералов Баженовского месторождения хризотил-асбеста (Ерохин, 1997,), который насчитывал уже 121 минеральный вид, в том числе около 60 — из родингитов. В 2003 году А.А. Антонов в своей монографии приводит уже 72 минерала, установленных в родингитах Баженовского месторождения. При составлении своего второго кадастра автор в 2006 году насчитал для месторождения 151 минеральный вид, причем к родингитам относилось около 80 из них (Ерохин, 2006,). В настоящее время в различных минеральных ассоциациях, так или иначе связанных с родингитами Баженовского офиолитового комплекса, установлено 113 минеральных видов. Они перечислены в таблице 4.1. В нее включены как достоверно установленные минералы, которых подавляющее большинство (102), так и сомнительные находки (11; в таблице отмечены звездочкой). Эти минералы требуют дополнительного изучения и точной диагностики.

Ниже приводится краткое описание всех минералов баженовских родингитов. Они разделены на главные, второстепенные и редкие; отдельно собраны рудные минералы.

4.1. Главные породообразующие минералы родингитов

Главными породообразующими минералами родингитов из Баженовского офиолитового комплекса являются **гроссуляр, диопсид, везувиан** и **клинохлор**, а также — в некоторых породах — **цоизит** и **пренит**. В этом же разделе приводятся описания **андрадита, уваровита** и **геденбергита**, т.к. каждый из них в некоторых (локальных) случаях тоже может относиться к главным породообразующим минералам. Например, геденбергит и андрадит слагают значимые скопления в родингитизированных габброидах, особенно в ассоциации с сульфидной минерализацией, а уваровит — характерный минерал родингитизированных хромититов.

Гроссуляр Са₃Al₂[SiO₄]₃. На Баженовском месторождении гроссуляр описан еще в 1907 году как главный минерал родингитов (Крыжановский, 1907). Более детальное его описание приводилось позднее В.В. Черных, Л.М. Ступкиной, Э.М. Спиридоновым, Н.С. Барсуковой, А.А. Антоновым и другими. Гроссуляр слагает матрицу родингитов, зачастую образуя мономинеральные

Таблица 4.1. Список минеральных видов, известных в баженовских родингитах

Nº	Минерал	Авторы первой находки	Год	Породы
		Самородные элементы и ин		
1	золото	В.В. Мурзин	1995	серпентиниты
2	медь	В.И. Крыжановский	1907	серпентиниты
3	серебро	Ю.В. Ерохин	2010	родингиты, диориты
4	железо	Н.Д. Соболев и др.	1966	перидотиты
5	олово	Ю.В. Ерохин	2010	родингиты
6	хромферид	Н.В. Чуканов	1997	родингиты
-		Сульфиды, арсениды, а	нтимониды	1
7	пирит	П.М. Татаринов	1937	порфириты, родингиты
8	марказит	Э.М. Спиридонов и др.	1996	метагаббро
9	пирротин	Ю.А. Соколов	1980	метагаббро
10	халькопирит	П.М. Татаринов	1937	метагаббро
11	борнит	К.К. Золоев и др.	1985	метагаббро
12	кубанит	Э.М. Спиридонов и др.	1996	родингиты
13	халькозин	К.К. Золоев и др.	1985	родингиты
14	сфалерит	Э.М. Спиридонов и др.	1996	метагаббро
15	миллерит	Э.М. Спиридонов и др.	1995	родингиты
16	годлевскит	Э.М. Спиридонов и др.	1995	родингиты
17	макинавит	Э.М. Спиридонов и др.	1996	метагаббро
18	пентландит	Э.М. Спиридонов и др.	1995	метагаббро
19	кобальтпентландит	Э.М. Спиридонов и др.	1995	родингиты
20	хизлевудит	Э.М. Спиридонов и др.	1995	серпентиниты
21	никелин	Э.М. Спиридонов и др.	1996	родингиты
22	маухерит	Э.М. Спиридонов и др.	1995	родингиты
23	сперрилит*	Э.М. Спиридонов и др.	1996	родингиты
24	брейтгауптит	Э.М. Спиридонов и др.	1995	родингиты
25	валлериит	Э.М. Спиридонов и др.	1996	метагаббро
26	•	А.С. Варлаков		•
20	точилинит	·	1995	серпентиниты
27	62555545	Окислы и гидроон		DO FILLIFIETI :
	бадделеит	И.А. Попель и др.	1997	родингиты
28	кварц	В.И. Крыжановский	1907	к.в. серпентинитов
29	тенорит	Ю.В. Ерохин	2000	родингиты
30	гематит	Л.А. Соколова	1960	кварцевые жилы
31	ильменит	П.М. Татаринов	1940	габбро-диориты
32	перовскит	Ю.В. Ерохин	2005	родингит. габбро
33	магнетит	В.И. Крыжановский	1907	серпентиниты
34	хромит	Н.С. Барсукова и др.	1996	родингиты
35	магнезиохромит	А.А. Антонов	1995	родингиты
36	брусит .	Н.С. Курнаков и др.	1926	серпентиниты
37	гетит	Э.М. Спиридонов и др.	1996	метагаббро
38	квинтинит	С.В. Кривовичев и др.	2012	родингиты
	Common .	С.Б. Кривовичев и др.	LVIL	родинины
39	гроссуляр	В.И. Крыжановский	1907	родингиты
40	андрадит	В.И. Крыжановский	1907	родингиты
40		в.и. крыжановский Е.В. Галускин и др.	1998	•
	уваровит	3,		родингиты
42	циркон	Н.С. Барсукова	1995	метаплагиограниты
43	везувиан	В.И. Крыжановский	1907	родингиты
44	цоизит	П.М. Татаринов	1928	габброиды
45	клиноцоизит	П.М. Татаринов	1940	кварцевые порфиры
46	клиноцоизит-(Sr)	Ю.В. Ерохин	2011	родингиты
47	эпидот-(Sr)	Ю.В. Ерохин	2011	родингиты
48	эпидот	П.М. Татаринов	1928	габброиды
49	алланит-(Се)	А.А. Антонов	2003	родингиты
50	титанит	П.М. Татаринов	1940	пироксениты
51	диопсид	В.И. Крыжановский	1907	родингиты
52	геденбергит	И.А. Попель и др.	1996	родингиты
53	гиттинсит гиттинсит	И.А. Попель и др. Ю.В. Ерохин, В.В. Хиллер	2013	родингиты
				• • • •
54	волластонит	Ю.В. Ерохин и др.	2000	родингиты
55	ксонотлит	Ю.А. Соколов	1979	родингиты
56	пектолит	А.С. Варлаков, В.О. Поляков	1986	родингиты
57	тоберморит	А.Е. Задов и др.	1995	родингит. диориты
58	клинотоберморит	А.Е. Задов и др.	1995	родингит. диориты
59	пломбьерит	А.Е. Задов и др.	1995	родингит. диориты

Таблица 4.1. Продолжение

60	DODOUVOUNT	A E 22000 H BD	2000	DOBINIEUT:
50 51	розенханит дженнит*	А.Е. Задов и др. А.А. Антонов и др.	2000 1996	родингиты родингиты
52	дженнит гиллебрандит*	А.А. Антонов и др. А.А. Антонов и др.	1996	родингиты родингиты
52 53		• • •	1928	• • • •
	тремолит	П.М. Татаринов		габброиды
54 5 E	ферроактинолит	А.А. Антонов	1996	родингиты
55	паргасит	М.С. Рапопорт	1996	габбро-нориты
56	пирофиллит*	Н.С. Барсукова и др.	1996	родингиты
57	флогопит	К.К. Золоев и др.	1985	ультрабазиты
68	клинохлор	Н.С. Курнаков и др.	1926	серпентиниты
69	шамозит	Н.С. Барсукова	1995	метаплагиограниты
70	амезит*	А.А. Антонов	2003	родингиты
71	антигорит	В.И. Крыжановский	1907	серпентиниты
72	стевенсит*	А.Е. Задов и др.	2000	родингиты
73	хризоколла*	Ю.В. Ерохин	1996	к.в. габброидов
74	пренит	Л.А. Соколова	1967	родингиты
75	кимрит	Ю.В. Ерохин	2011	родингиты
76	альбит	П.М. Татаринов	1928	габброиды
77	натролит	Ю.А. Соколов	1980	родингиты
78	сколецит	А.А. Антонов	2003	родингиты
79	ломонтит	Ю.А. Соколов	1980	родингиты
80	томсонит-Са	Ю.А. Соколов	1980	родингиты
31	стильбит-Са	Ю.А. Соколов	1980	родингиты
32	гейландит-Са	А.А. Антонов и др.	1995	родингиты
33	стеллерит	А.А. Антонов	1996	родингиты
34	мезолит	А.А. Антонов	2003	родингиты
35	гоннардит	Ю.В. Ерохин и др.	2005	родингиты
36	филлипсит-К	А.А. Антонов и др.	1995	родингиты
37	филлипсит-К филлипсит-Са	Ю.В. Ерохин и др.	2004	родингиты
88	<i>филлипсит-си</i> гармотом	В.А. Попов	1995	
89	шабазит-Са	Л.А. Соколова		родингиты
			1967	родингиты
90	жисмондин	А.А. Антонов	2003	родингиты
91	гидроксиапофиллит-(К)	А.С. Варлаков, В.О. Поляков	1986	родингиты
92	гиролит	А.Б. Лоскутов, Е.А. Новгородова	2013	родингиты
93	касаткинит	И.В. Пеков и др.	2011	родингиты
94	датолит	А.С. Варлаков и др.	1986	родингиты
95	(2 R) 114T	Карбонаты	1907	V D. CODEGUTHUUTOR
	кальцит	В.И. Крыжановский		к.в. серпентинитов
96	арагонит	В.И. Крыжановский	1907	к.в. серпентиниты
97	доломит	П.М. Татаринов	1928	к.в. серпентинитов
98	гидромагнезит	П.М. Татаринов	1928	к.в. серпентинитов
99	алюмогидрокальцит*	Н.С. Барсукова и др.	1996	родингиты
100	гидроталькит	Н.С. Курнаков и др.	1926	к.в. серпентинитов
101	пироаурит	Н.С. Курнаков и др.	1926	к.в. серпентинитов
100		Фосфаты	0000	
102	фторапатит	Ю.В. Ерохин и др.	2003	хромититы
103	гидроксилапатит	М.С. Рапопорт	1996	габбро-нориты
104	хлорапатит*	А.А. Антонов	2003	родингиты
105		Сульфаты	0044	
105	долерофанит	Ю.В. Ерохин	2011	родингиты
106	гексагидрит	Е.С. Шагалов	1997	родингиты
L07	лангит*	Ю.В. Ерохин	2000	к.в. габброидов
108	татариновит	Н.В. Чуканов и др.	2016	родингиты
109	таумасит*	А.Б. Лоскутов, Е.А. Новгородова	2013	родингит. диориты
		Нитраты		
110	герхардтит	Ю.В. Ерохин и др.	1999	родингиты
111	ликазит	Ю.В. Ерохин и др.	1999	родингиты
		Галогениды		
112	митчерлихит	Ю.В. Ерохин	2011	родингиты
113	коннеллит	Ю.В. Ерохин	2011	родингиты

Примечание: В таблице указаны авторы и год первой находки минерала в породах Баженовского офиолитового комплекса; некоторые минералы в родингитах были найдены позже «официальной» первой находки на месторождении, которая и отмечена в правом столбце,

* — минерал требует подтверждения, к.в. — кора выветривания. Полужирным курсивом выделены минералы, впервые установленные для Баженовского месторождения автором.

51. Друза почти бесцветных кристаллов гроссуляра. 5.5 х 9.5 см. Южный карьер. Образец: А.Г. Левин.

52. Друзовый сросток кристаллов **гроссу-ляра** со следами природного травления на поверхности. 4.5 х 3.5 см. Южный карьер. Образец: А.Г. Левин.

53. Друза **гроссуляра**. 10 x 6.8 см. Южный карьер. Образец: А.Г. Левин.

54. Густо-зеленый кристалл обогащенного хромом **гроссуляра** (1.6 см) на гроссуляровом родингите. Образец: А.П. Чертихин.

57. Кристаллы **гроссуляра** (до 1.4 см). Южный карьер. Образец: А.Г. Левин.

- 58. Щетка бесцветных кристаллов **гроссуляра.** Поле зрения 2.4 х 3.6 см. Южный карьер. Образец: А.Б. Лоскутов и Е.А. Новгородова.
- 59. **Гроссуляр** двух генераций: друзовый сросток более крупных розовато-желтоватых кристаллов на корке, сложенной коричневатыми кристаллами. 8 x 5 см. Образец: А.Б. Лоскутов и Е.А. Новгородова.
- 60. Кристаллы **гроссуляра** на диопсидовом родингите. Ширина поля зрения 5 см. Образец: В.А. Пелепенко, #5351.
- 61. Кристалл **гроссуляра** с поверхностью, покрытой фигурами растворения. 4.5 х 3.2 см. Южный карьер. Образец: А.Г. Левин.

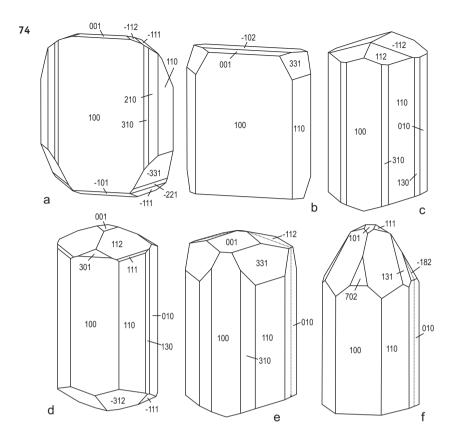
62. Друза скелетных кристаллов (до 1.3 см) гроссуляра, на гранях которых видны следы растворения; с зеленым везувианом и белым кальцитом. 7.5 х 5.5 см. Южный карьер. Образец: А.Г. Левин.

63. Гроссуляр двух генераций: бесцветные скелетные кристаллы-реберники автоэпитаксически наросли на розовые частично растворенные индивиды. Поле зрения 6 х 4 см. Южный карьер. Образец: А.Г. Левин.

64. Прозрачные кристаллы **гроссуляра** на родингите. Поле зрения 2.4 x 3.6 см. Образец: А.Б. Лоскутов и Е.А. Новгородова.

65. Щетка прозрачных полихромных кристаллов **гроссуляра**, покрывающая мелкозернистый гранатовый родингит. 6.5 x 4 см. Образец: А.П. Чертихин.

66. Друзовый сросток кристаллов гроссуляра. 7 х 3.5 см. Образец: А.П. Чертихин.


67. Друзовый сросток прозрачных кристаллов **гроссуляра**. 4 х 3 см. Южный карьер. Образец: А.Г. Левин.

68. Зонально окрашенные кристаллы гроссуляра. 3.5 х 2.5 см. Южный карьер. Образец: А.Г. Левин.

74. Кристаллы **диопсида** из родингитов Баженовского месторождения. Вычерчено по литературным данным: (a), (c), (d) (Попель, Антонов, 1996₁), (b), (e) (Варлаков, Поляков, 1986), (q) (Попов, 1995).

k{-312}, σ {112}. Эти кристаллы прозрачные или полупрозрачные, зональные: ядро сложено светло-серым железистым диопсидом, а периферия — бесцветным диопсидом. Состав внешней зоны (в мас.%): SiO_2 54.77; Al_2O_3 0.17; FeO 1.60; MnO 0,42; MgO 17.28; CaO 25.65; сумма 99.89. Формула минерала: $Ca_{1.00}(Mg_{0.94}Fe_{0.05}Mn_{0.01})_{\Sigma1.00}(Si_{1.99}Al_{0.01})_{\Sigma2.00}O_6$ (Антонов, 2003).

Нередко в полостях родингитов на агрегатах клинохлора находятся расшепленные уплощенные плохо ограненные зональные кристаллы зеленого цвета. В контактах родингитов с серпентинитами обнаружены расшепленные и скрученные кристаллы снежно-белого диопсида размером до 1—2 см, а также нитевидные индивиды диопсид-геденбергита (Антонов, 2003).

В родингитах часто отмечаются двойники диопсида. Ранее были обнаружены сдвойникованные по [100] изометричные индивиды (Варлаков, Поляков, 1986). Бледные буровато-серые короткостолбчатые или изометричные двойники размером до 2 мм образуют друзы на поверхности трещин, покрытых мелкозернистыми корками светло-бурого гроссуляра. Этим кристаллам диопсида свойственны следующие простые формы (илл. 74e): a $\{100\}$, b $\{010\}$, c $\{001\}$, m $\{110\}$, f $\{310\}$, $\infty\{331\}$, $\tau\{-112\}$.

В гидротермально измененных родингитах все кристаллы зеленоватого диопсида оказались двойниками по [100] (*илл.* 74f). Отношение длины кристалла по [001] к толщине колеблется от 2.5 до 3. Огранка кристаллов представлена пинакоидами a{100}, b{010}, ромбическими призмами m{110}, y{101}, r{-182}, J{702} и ромбическими дипирамидами u{111}, d{131}, τ {532}. Вследствие двойникования кристаллы имеют псевдоромбическую симметрию. Двойниковые швы у них обычно не видны, входящих углов нет (Попов, 1995).

75. Сросток полихромных кристаллов **диопсида**, частично обросших белыми кристаллическими корками **пренита**. 4 x 3.5 см. Образец: В.А. Пелепенко.

49

76. Друза сдвойникованных кристаллов **диопсида**. 7 x 3 см. Образец: В.А. Пелепенко, #5339.

77. Полупрозрачный полихромный кристалл **диопсида** (2.1 x 1 см) на щетке клинохлора. Образец: В.А. Пелепенко, #5336.

В результате проведенных нами исследований подтверждены ранее полученные данные и установлены новые морфологические разновидности кристаллов диопсида. Так, выделены клиновидные индивиды, вытянутые по оси [001] и слабо уплощенные по (100). Подобная форма кристаллов достигается за счет сильного развития ромбических призм вертикального пояса при почти полном отсутствии граней {001}. Наиболее богатые гранями клиновидные индивиды установлены в ассоциации с желтовато-коричневым высокожелезным гроссуляром, в котором доля минала андрадита достигает 30-35%. Такой диопсид образует бесцветные прозрачные кристаллы до 0.5 см по удлинению. Им свойственно развитие следующих форм (илл. 80a): a{100}, y{101}, F{301} — пинакоиды, m $\{110\}$, f $\{310\}$, g $\{210\}$, u $\{111\}$, v $\{221\}$, $\omega\{331\}$, $\Gamma\{311\}$ — ромбические призмы. Головка кристаллов имеет матовый отблеск, на гранях призм горизонтального пояса отмечается комбинационная штриховка.

Более простые в огранке клиновидные кристаллы установлены в составе шеток на плотном родингите. Размер их не превышает 1 см по удлинению, окраска светло-серая, они полупрозрачны. В ассоциации с ними никаких других минералов не наблюдается. Огранка диопсида здесь представлена четырьмя пинакоидами — $a\{100\}$, $b\{010\}$, $q\{-301\}$, $c\{001\}$ и двумя ромбическими призмами — $m\{110\}$, $\omega\{331\}$ (и.и. 80b). Грани призм покрыты вициналями и комбинационной штриховкой. В некоторых случаях индивиды сдвойникованы по [100], что придает им псевдоромбический облик. Такое изменение морфологии диопсида в баженовских родингитах отмечалось и ранее (Попов, 1995).

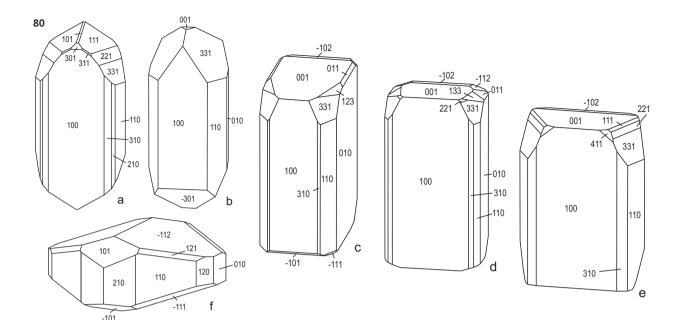
Также нами выделены столбчатые брусковидные индивиды, вытянутые по оси [001] и иногда слабо уплощенные по (100). Подобный облик кристаллов дости-

78. Друзовый сросток полихромных кристаллов диопсида на щетке клинохлора. 8 х 7.5 см. Образец: В.А. Пелепенко, #4337.

гается за счет сильного развития трех пинакоидов — $a\{100\}$, $b\{010\}$, $c\{001\}$. Типичные брусковидные индивиды образуют щетки в ассоциации с кристаллами светло-розового гроссуляра (содержание минала андрадита не более 5%) на пренитизированном родингите. Такой диопсид отличается темно-серой окраской и полупрозрачен. Его кристаллы достигают 5 мм по удлинению, и им свойственны следующие простые формы (илл. 80с): a{100}, b{010}, c{001}, m{110}, f{310}, ω{331}, n{-102}, e{011}, s{-111}, p{-101}, w{123}. На гранях призм горизонтального пояса отмечается комбинационная штриховка, а на гранях третьего пинакоида — вицинали. Для данных индивидов характерно двойникование по [010], причем на гранях первого пинакоида наблюдаются входящие углы и двойниковый шов.

Слабо уплощенные брусковидные кристаллы отличаются сильным развитием первого пинакоида и почти постоянным двойникованием по [100]. Они слагают щетки на пренитизированном родингите в ассоциации с поздним игольчатым везувианом. Такой диопсид образует индивиды длиной до 1 см, имеет зеленовато-серую окраску и слабо просвечивает. Огранка его кристаллов представлена пинакоидами a{100}, b{010}, c{001}, n{-102} и ромбическими призмами m{110}, f{310}, v{221}, ω {331}, ε {133}, e{011}, τ {-112} (им. 80d). Наблюдаемые двойники также характеризуются псевдоромбической симметрией.

Сильно уплощенные кристаллы диопсида широко представлены в баженовских родингитах. Их морфология уже описывалась (Варлаков, Поляков, 1986; Попель, Антонов, 1996,); нами подобные индивиды установлены в приконтактовой зоне метасоматитов, где во вмещающих антигоритовых серпентинитах отмечаются диопсид-хлоритовые прожилки мощностью до 1 см. В раздувах



79. Короткопризматические кристаллы

диопсида с клинохлором. 10 х 5 см.

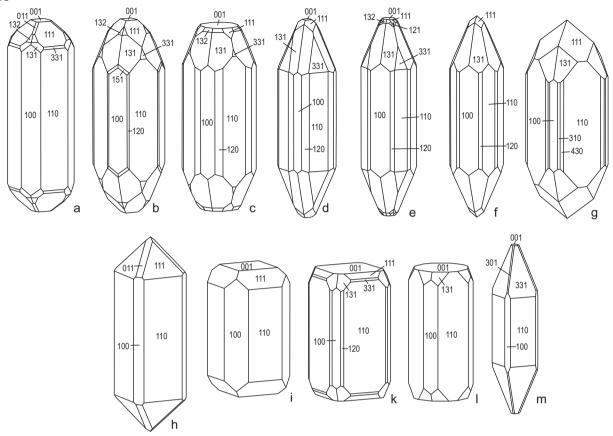
Центральный карьер.

Образец: И.В. Пеков, #11448.

80. Кристаллы **диопсида** из родингитов Баженовского месторождения.

этих прожилков наблюдаются полости, инкрустированные уплощенными кристаллами диопсида (сильное уплощение возникло за счет интенсивного развития первого пинакоида). Их длина достигает 3—5 мм, они бесцветны и прозрачны. Таким индивидам свойственно развитие следующих форм (илл. 80e): a $\{100\}$, c $\{001\}$, n $\{-102\}$ — пинакоиды, m $\{110\}$, f $\{310\}$, u $\{111\}$, v $\{221\}$, $\infty\{331\}$, o $\{411\}$ — ромбические призмы. На гранях призм фиксируется комбинационная штриховка, на плоскости первого пинакоида отмечаются вицинали.

Кроме того, нами обнаружены необычные индивиды — сильно уплощенные вдоль [001]. Они наблюдаются в открытой трещине среди плотного серого диопсидового родингита. Никаких других минералов в этой ассоциации не наблюдается. Диопсид здесь имеет светло-зеленую окраску, непрозрачен, размер его индивидов не превышает 5—6 мм. В огранке кристаллов участвуют пинакоиды у{101}, b{010}, p{-101} и ромбические призмы т{110}, g{210}, 1{120}, μ {121}, τ {-112}, s{-111} (илл. 80f). Такая необычная морфология кристаллов возникла за счет того, что они сдвойникованы сразу по двум плоскостям — (100) и (010). Видимо, наличие входящих углов на гранях первого и второго пинакоидов позволило индивидам более сильно развиваться в этих направлениях.


Таким образом, морфология кристаллов диопсида из родингитов Баженовского офиолитового комплекса характеризуется большим разнообразием. В целом, отмечаются следующие морфотипы кристаллов: сильно уплощенные (по [100] и [001]), призматические, уплощенно-призматические, клиновидные, уплощенно-клиновидные, брусковидные и досковидные. Всего на индивидах баженовского диопсида установлено около 30 простых форм (по нашим и ранее опубликованным данным). Для его кристаллов отмечается двойникование по [100] и [010]. Двойники по первому пинакоиду встречаются наиболее часто, и индивиды при этом приобретают псевдоромбическую симметрию, что усложняет облик кристаллов. Двойники по [010] отмечаются гораздо реже, и морфология кристаллов из-за такого двойникования практически не меняется.

81. Друза длиннопризматических полихромных кристаллов (до 2.3 x 0.3 см) **диопсида**. Образец: А.П. Чертихин.

82. Полихромные (фиолетовые головки обогащены Mn) кристаллы **диопсида**. Поле зрения 2.4 х 3.6 см. Образец: А.Б. Лоскутов и Е.А. Новгородова.

91. Кристаллы **везувиана** из Баженовского месторождения.

нях {131}. На таких индивидах обнаружено 13 простых форм: {001}, {111}, {112}, {221}, {331}, {101}, {301}, {132}, {131}, {231}, {110}, {100}, {120}. Наиболее типичные кристаллы приведены на илл. 91d и 91e. Они отличаются богатством форм и огранены узким базопинакоидом c{001}, дитетрагональными дипирамидами s{131}, i{132}, z{121}, тетрагональными дипирамидами p{111}, t{331}, тетрагональными призмами a{100}, m{110} и дитетрагональной призмой f{120}.

Более поздними исследованиями в баженовских родингитах установлено еще два типа кристаллов — дипирамидальные («карандаши») и короткопризматические (вилюитоподобные). Первая разновидность встречается по трещинам в метасоматитах и окружающих серпентинитах. Эти индивиды характеризуются полным отсутствием граней пинакоида (илл. 91f, 91g, 91h). В огранке кристаллов отмечаются дитетрагональная дипирамида s{131}, тетрагональные дипирамиды p{111}, o{101}, тетрагональные призмы а{100}, m{110} и дитетрагональные призмы f{120}, d{310}, w{430}. На гранях призм наблюдается штриховка, параллельная удлинению кристалла (Минералогия..., 1996; Антонов, 2003).

Вилюитоподобные индивиды встречаются исключительно в полостях среди сплошного везувиана (Ерохин, Шагалов, 1998; Антонов, 2003). Встречаются кристаллы как с простой (илл. 91i), так и с более сложной (илл. 91k) огранкой. На них иногда нарастают индивиды поздней генерации (илл. 91l). Вилюитоподобные кристаллы имеют бедную огранку, будучи образованы пинакоидом с{001}, дитетрагональной дипирамидой s{131}, тетрагональными дипирамидами p{111}, t{331}, тетрагональными призмами а{100}, m{110} и дитетрагональной

169. Сложноустроенная зональная корка **брусита**: поперечный срез (приполированная пластина). 20 x 10.5 см. Южный карьер. Образец: А.Г. Левин.

170. Сложноустроенная зональная корка **брусита**, аналогичная изображенной на илл. 169, но в срезе, субпараллельном поверхности, на которую она нарастала (приполированная пластина). 19 x 9 см. Южный карьер. Образец: А.Г. Левин.

171. Щетка призматических зональных кристаллов **брусита**. Поле зрения 2.4 x 3.6 см. Образец: В.А. Пелепенко, #5378.

172. Друза таблитчатых и короткопризматических кристаллов **брусита** (синяя окраска наведена облучением). 20 x 20 см. Образец: О.С. Бартенев.

173. Корка, сложенная зональными почками **брусита** (поперечный срез). 14 х 4.5 см. Южный карьер. Образец: А.Г. Левин.

Отсюда происходят одни из лучших в мире образцов брусита. Он был установлен и детально описан еще в 1926 году в баженовских гипербазитах (Курнаков, Черных, 1926). Брусит является породообразующим минералом в гидротермально переработанных участках тел хризотиловых серпентинитов и в местах их перекристаллизации слагает крупные (до 1-2 м) мономинеральные обособления, часто с полостями, инкрустированными ромбоэдрическими, призматическими, таблитчатыми или пластинчатыми кристаллами размером до 15 см.