46. Druse of red grossular and greenish diopside with white calcite. 5.5 x 4 cm. Specimen: Vladimir A. Pelepenko.

identification.

Grossular, **Ca**₃**Al**₂**[Si0**₄]₃. At Bazhenovskoe deposit grossular was reported as the major rodingite mineral by Kryzhanovsky (1907). Later, V.V. Chernykh, L.M. Stupkina, E.M. Spiridonov, N.S. Barsukova, and A.A. Antonov described this mineral in more detail. Grossular occurs in a rodingite matrix frequently forming the monomineralic rock garnetite (grossularite). It is distinguished by its color, varying from colorless through all of the spectrum; pink, yellow, and brown tint to black. The refraction indices of colored crystals are as follows: 1.738(3) colorless and orange-red and 1.749(3) pink. The unit-cell parameter of these garnets ranges from 11.84 to 11.85 Å (Antonov, 2003). Microscopically, the crystals

PART 4. MINERALOGY OF RODINGITES

his chapter is based on numerous studies of various researches covering the period from 1907 to today. The first consolidated list of minerals from Bazhenovskoe chrysotile asbestos deposit (Zoloev et al., 1985) included only 60 mineral species. Erokhin (1997,) compiled an inventory of minerals from Bazhenovskoe chrysotile asbestos deposit, which had 121 mineral species including 60 from rodingites. Antonov (2003) listed 72 minerals found in Bazhenovskoe rodingites. Erokhin (2006,) counted 151 mineral species including 80 from the rodingite in drawing up his second inventory. Currently, 113 mineral species are found in various mineral assemblages in one way or another related to rodingites of Bazhenovskiy ophiolite complex. They are listed in Table 4.1. Both correctly identified minerals, which constitute the vast majority (102) and questionable findings (11, * – asterisked in the table) are given in the table. The questionable findings require additional investigation and accurate

Below are described all of the minerals of Bazhenovskoe rodingites. They are divided into major, minor, and rare; ore minerals are reported on separately.

4.1. Major **Rock-Forming Minerals of Rodingites**

The major rock-forming minerals in rodingites of Bazhenovskiy ophiolite complex are grossular, diopside, vesuvianite and clinochlore; in some rocks there are zoisite and prehnite. Andradite, uvarovite, and hedenbergite are also reported in this section because each of them can be the major rock-forming mineral in some cases. For example, hedenbergite and andradite comprise large clusters in rodingitized gabbro, especially in association with sulfide minerals, while uvarovite is a characteristic mineral of rodingitized chromitite.

Table 4.1. List of Mineral Species known in rodingites of Bazhenovskoe deposit

No.	Mineral	Authors of the first finding	Year	Rock			
	Native metals and intermetallic compounds						
1	gold	V.V. Murzin	1995	serpentinite			
2	copper	V.I. Kryzhanovsky	1907	serpentinite			
3	silver	Yu.V. Erokhin	2010	rodingite, diorite			
4	iron	N.D. Sobolev et al.	1966	peridotite			
5	tin	Yu.V. Erokhin	2010	rodingite			
6	chromferide	N.V. Chukanov	1997	rodingite			
		Sulfides, arsenides, and	antimonides				
7	pyrite	P.M. Tatarinov	1937	porphyry, rodingite			
8	marcasite	E.M. Spiridonov <i>et al</i> .	1996	metagabbro			
9	pyrrhotite	Yu.A. Sokolov	1980	metagabbro			
10	chalcopyrite	P.M. Tatarinov	1937	metagabbro			
11	bornite	K.K. Zoloev <i>et al</i> .	1985	metagabbro			
12	cubanite	E.M. Spiridonov et al.	1996	rodingite			
13	chalcocite	K.K. Zoloev et al.	1985	rodingite			
14	sphalerite	E.M. Spiridonov <i>et al</i> .	1996	metagabbro			
15	millerite	E.M. Spiridonov et al.	1995	rodingite			
16	godlevskite	E.M. Spiridonov <i>et al</i> .	1995	rodingite			
17	mackinawite	E.M. Spiridonov <i>et al</i> .	1996	metagabbro			
18	pentlandite	E.M. Spiridonov et al.	1995	metagabbro			
19	cobaltpentlandite	E.M. Spiridonov et al.	1995	rodingite			
20	heazlewoodite	E.M. Spiridonov et al.	1995	serpentinite			
21	nickeline	E.M. Spiridonov et al.	1996	rodingite			
22	maucherite	E.M. Spiridonov et al.	1995	rodingite			
23	sperrylite*	E.M. Spiridonov et al.	1996	rodingite			
24	breithauptite	E.M. Spiridonov et al.	1995	rodingite			
25	vallereiite	E.M. Spiridonov et al.	1996	metagabbro			
26	tochilinite	A.S. Varlakov	1995	serpentinite			
		Oxides and hydro	oxides				
27	baddeleyite	I.A. Popel <i>et al.</i>	1997	rodingite			
28	quartz	V.I. Kryzhanovsky	1907	weathered serpentinite			
29	tenorite	Yu.V. Erokhin	2000	rodingite			
30	hematite	L.A. Sokolova	1960	quartz veins			
31	ilmenite	P.M. Tatarinov	1940	gabbro-diorite			
32	perovskite	Yu.V. Erokhin	2005	rodingitized gabbro			
33	magnetite	V.I. Kryzhanovsky	1907	serpentinite			
34	chromite	N.S. Barsukova <i>et al</i> .	1996	rodingite			
35	magnesiochromite	A.A. Antonov	1995	rodingite			
36	brucite	N.S. Kurnakov et al.	1926	serpentinite			
37	goethite	E.M. Spiridonov et al.	1996	metagabbro			
38	quintinite	S.V. Krivovichev et al.	2012	rodingite			
		Silicates					
39	grossular	V.I. Kryzhanovsky	1907	rodingite			
40	andradite	V.I. Kryzhanovsky	1907	rodingite			
41	uvarovite	E.V. Galuskin <i>et al.</i>	1998	rodingite			
42	zircon	N.S. Barsukova	1995	metaplagiogranite			
43	vesuvianite	V.I. Kryzhanovsky	1907	rodingite			
44	zoisite	P.M. Tatarinov	1928	gabbro			
45	clinozoisite	P.M. Tatarinov	1940	quartz porphyry			
46	clinozoisite-(Sr)	Yu.V. Erokhin	2011	rodingite			
47	epidote-(Sr)	Yu.V. Erokhin	2011	rodingite			
48	epidote	P.M. Latarinov	1928	gabbro			
49	allanite-(Ce)	A.A. Antonov	2003	rodingite			
50	titanite	P.M. Tatarinov	1940	pyroxenite			
51	diopside	V.I. Kryzhanovsky	1907	rodingite			
52	hedenbergite	I.A. Popel <i>et al.</i>	1996	rodingite			
53	gittinsite	Yu.V. Erokhin, V.V. Khiller	2013	rodingite			
54	wollastonite	Yu.V. Erokhin <i>et al</i> .	2000	rodingite			
55	xonotlite	Yu.A. Sokolov	1979	rodingite			
56	pectolite	A.S. Varlakov, V.O. Polyakov	1986	rodingite			
57	tobermorite	A.E. Zadov <i>et al</i> .	1995	rodingitized diorite			

Table 4.1. Continuation

No.	Mineral	Authors of the first finding	Year	Rock
58	clinotobermorite	A.E. Zadov <i>et al</i> .	1995	rodingitized diorite
59	plombièrite	A.E. Zadov et al.	1995	rodingitized diorite
60	rosenhahnite	A.F. Zadov et al.	2000	rodingite
61	iennite*	A A Antonov et al	1996	rodingite
62	hillebrandite*	A A Antonov et al	1996	rodingite
63	tremolite	P M Tatarinov	1028	gabbro
6/	forroactinolito	Λ Λ Antonov	1006	rodingito
65	pargasito	M S Papapart	1990	abbronorito
66	purophyllito*	N.S. Rapoport	1990	radingita
67	philogopito	K. Zaloov at al	1990	ultramafic rocks
60	clinachlara	N.N. Zoloev et al	1965	corportinito
60	chamosito	N.S. Rufflakov et ut.	1920	motonlagiograpito
70		N.S. Dalsukova	1995	radingita
70	allesite	A.A. AIILOIIOV	2003	rounigite
/1	antigorite	V.I. Kryznanovsky	1907	serpentinite
72	stevensite	A.E. Zadov et al.	2000	rodingite
73	chrysocolla*	Yu.V. Erokhin	1996	weathered gabbro
74	prehnite	L.A. Sokolova	1967	rodingite
75	cymrite	Yu.V. Erokhin	2011	rodingite
76	albite	P.M. Tatarinov	1928	gabbro
77	natrolite	Yu.A. Sokolov	1980	rodingite
78	scolecite	A.A. Antonov	2003	rodingite
79	laumontite	Yu.A. Sokolov	1980	rodingite
80	thomsonite-Ca	Yu.A. Sokolov	1980	rodingite
81	stilbite-Ca	Yu.A. Sokolov	1980	rodingite
82	heulandite-Ca	A.A. Antonov <i>et al</i> .	1995	rodingite
83	stellerite	A.A. Antonov	1996	rodingite
84	mesolite	A.A. Antonov	2003	rodingite
85	aonnardite	Yu.V. Erokhin <i>et al</i> .	2005	rodingite
86	phillipsite-K	A.A. Antonov <i>et al.</i>	1995	rodinaite
87	phillipsite-Ca	Yu.V. Erokhin <i>et al</i> .	2004	rodingite
88	harmotome	V A Popov	1995	rodingite
80	chabazite-Ca		1967	rodingite
90	gismondine		2003	rodingite
01	hydroxyapophyllite_(K)	A S Varlakov V O Polyakov	1086	rodingite
02	gyrolite	A B Loskutov F A Novgorodova	2013	rodingite
03	kasatkinito	I V Pokov at al	2015	rodingite
95	datalita	A S Varlakov et al	1086	rodingite
94	datotite	A.S. Vallakov et ul.	1980	Tourngite
05	calcito	V I. Knizbanovsky	1007	weathered corportinite
90	aragonito	V.I. Kryznanovsky	1907	weathered serpentinite
90	delemite	D.M. Tatarinov	1907	weathered corportinite
97	dotoinite	P.M. Tatarinau	1920	weathered serpentinite
90	nyuromagnesite	P.M. Idldillov	1920	
99	alumonyurocalcite	N.S. Barsukova et al.	1996	roungite
100	nyurotatette	N.S. Kurnakov et al.	1920	weathered serpentinite
101	pyroaurite	N.S. Kurnakov et al.	1926	weathered serpentinite
100	<i></i>	Phosphates	0000	1 111
102	Juorapatite	YU.V. Eroknin <i>et al.</i>	2003	chromitite
103	hydroxylapatite	M.S. Rapoport	1996	gabbronorite
104	chlorapatite*	A.A. Antonov	2003	rodingite
		Sulfates		
105	dolerophanite	Yu.V. Erokhin	2011	rodingite
106	hexahydrite	E.S. Shagalov	1997	rodingite
107	langite*	Yu.V. Erokhin	2000	weathered gabbro
108	tatarinovite	N.V. Chukanov et al.	2016	rodingite
109	thaumasite*	A.B. Loskutov, E.A. Novgorodova	2013	rodingitized diorite
		Nitrates		
110	gerhardtite	Yu.V. Erokhin <i>et al</i> .	1999	rodingite
111	likasite	Yu.V. Erokhin et al.	1999	rodingite
		Halogenides		
112	mitscherlichite	Yu.V. Erokhin	2011	rodingite
113	connellite	Yu.V. Erokhin	2011	rodingite

* Mineral should be verified. The minerals found for the first time by the author at Bazhenovskoe deposit are italicized and **bolded**.

51. Druse of nearly colorless **grossular** crystals. 5.5 x 9.5 cm. South open pit. Specimen: Alexey G. Levin.

52. Cluster of **grossular** crystals with traces of natural etching on the surface. 4.5 x 3.5 cm. South open pit. Specimen: Alexey G. Levin.

36

57. **Grossular** crystals (up to 1.4 cm). South open pit. Specimen: Alexey G. Levin.

58. Crystal crust of colorless **grossular**. Image size 2.4 x 3.6 cm. South open pit. Specimen: Alexander B. Loskutov and Elena A. Novgorodova.

59. **Grossular** of two generations. Cluster of larger pinkishyellowish crystals on the crust composed of brownish crystals. 8 x 5 cm. Specimen: Alexander B. Loskutov and Elena A. Novgorodova.

60. **Grossular** crystals on diopside rodingite. Image wide 5 cm. Specimen: Vladimir A. Pelepenko, #5351.

61. **Grossular** crystal with etched surface. 4.5 x 3.2 cm. South open pit. Specimen: Alexey G. Levin.

62. Druse of skeletal **grossular** crystals (up to 1.3 cm), on the faces of which dissolution traces are seen; with green vesuvianite and white calcite. 7.5 x 5.5 cm. South open pit. Specimen: Alexey G. Levin.

62

63. **Grossular** of two generations: colorless edged skeletal crystals autoeptactically overgrow pink partly dissolved individuals. Image size 6 x 4 cm. South open pit. Specimen: Alexey G. Levin.

64. Transparent **grossular** crystals on rodingite. Image size 2.4 x 3.6 cm. Specimen: Alexander B. Loskutov and Elena A. Novgorodova.

65. Crystal crust of multocolored transparent **grossular** on fine-grained rodingite. 6.5 x 4 cm. Specimen: Alexander P. Chertikhin.

66. Cluster of **grossular** crystals. 7 x 3.5 cm. Specimen: Alexander P. Chertikhin.

67. Cluster of transparent **grossular** crystals. 4 x 3 cm. South open pit. Specimen: Alexey G. Levin.

67

68. **Grossular** crystals with zoned coloration. 3.5 x 2.5 cm. South open pit. Specimen: Alexey G. Levin.

42

74. **Diopside** crystals from rodingites of Bazhenovskoe deposit.

(a, c, d) after Popel and Antonov (1996,),

(b, e) after Varlakov and Polyakov (1986), and

(g) after Popov (1995).

matic or equant twins up to 2 mm in size form druses on fracture surfaces coated by fine-grained crusts of light brown grossular. These forms are typical of these diopside crystals (Fig. 74e): a{100}, b{010}, c{001}, m{110}, f{310}, \omega{331}, \tau{-112}.

All crystals of greenish diopside from hydrothermally altered rodingites are twinned on [100] (Fig. 74f). Crystal length on [001] to crystal thickness ratio ranges from 2.5 to 3. The crystal forms are: pinacoids a{100} and b{010}, orthorhombic prisms m{110}, y{101}, r{-182}, and J{702}, and orthorhombic bipyramids u{111}, d{131}, and τ {532}. Due to twinning, the crystals are pseudoorthorhombic. Composition planes are not seen and there are no reentrant angles (Popov, 1995).

Our study has supported previous data and revealed new morphological varieties of diopside crystals. For example, tapered extended along axis [001] and weakly flattened on (100) individuals were identified. Strongly developed orthorhombic prisms of vertical belt with completely absent faces {001} caused the shape of these crystals. Tapered individuals are the richest in faces and are associated with yellowish brown Fe-rich grossular, in which percentage of the andradite end-member reaches 30-35%. Such diopside occurs as colorless transparent crystals up to 0.5 cm in length with the following forms (Fig. 80a): pinacoids a{100}, y{101}, and F{301}, and orthorhombic prisms m{110}, f{310}, g{210}, u{111}, v{221}, \omega{331}, and {311}. The crystal terminations have a dull fire; striations due to oscillatory combinations are observed on the prismatic faces of the horizontal belt.

75. Cluster of multicolored **diopside** crystals partly overgrown by white crusts of prehnite. 4 x 3.5 cm. Specimen: Vladimir A. Pelepenko.

75

76. Group of twinned **diopside** crystals. 7 x 3 cm. Specimen: Vladimir A. Pelepenko, #5339.

77. Multicolored semitransparent **diopside** crystal (2.1 x 1 cm) on crystal crust of **clinochlore**. Specimen: Vladimir A. Pelepenko, #5336.

78. Cluster of multicolored **diopside** crystals on crystal crust of **clinochlore**. 8 x 7.5 cm. Specimen: Vladimir A. Pelepenko, #4337. Tapered crystals with simpler facing were observed in crystal crusts on dense rodingite. The crystals do not exceed 1 cm in length; they are light gray and semitransparent. No other minerals are associated with them. These forms have been found: four pinacoids a{100}, b{010}, q{-301}, and c{001}, and two orthorhombic prisms m{110} and ω {331} (Fig. 80b). Vicinals and striations due to oscillatory combinations are seen on the prismatic faces. Occasionally, individuals are twinned on [100] causing their pseudoorthorhombic habit. Such transformed morphology of diopside from Bazhenovskoe rodingites was previously mentioned by Popov (1995).

Also, we have identified columnar rod-like individuals extended along the axis [001] and occasionally weakly flattened on (100). This crystal habit results from three strongly developed pinacoids a{100}, b{010}, and c{001}. Typical rod-like individuals form crystal crusts in association with crystals of light pink grossular (the content of andradite end-member no higher than 5%) on prehnitized rodingite. This diopside is dark gray and semitransparent. Its crystals reach 5 mm in length and have the forms (Fig. 80c): a{100}, b{010}, c{001}, m{110}, f{310}, ω {331}, n{-102}, e{011}, s{-111}, p{-101}, and w{123}. Striations due to oscillatory combinations and vicinals are observed on the prismatic faces of horizontal belt and faces of the third pinacoid are observed. The twinning on [010] is characteristic of these individuals with reentrant angles and composition plane on the faces of the first pinacoid.

Weakly flattened rod-like crystals are distinguished by a strongly developed first pinacoid and nearly constant twinning on [100]. They form crusts in association

79. Short-prismatic **diopside** crystals with clinochlore. 10 x 5 cm. Central open pit. Specimen: Igor V. Pekov, #11448.

with acicular vesuvianite on prehnitized rodingites. Individuals of this diopside up to 1 cm in length are greenish gray and weakly translucent. Forms are: pinacoids a{100}, b{010}, c{001}, and n{-102}, and orthorhombic prisms m{110}, f{310}, v{221}, ω {331}, ϵ {133}, e{011}, τ {-112} (Fig. 80d). The observed twins are also pseudo-orthorhombic.

Strongly flattened crystals of diopside are abundant in Bazhenovskoe rodingites. Varlakov and Polyakov (1986) and Antonov and Popel (1996₁) reported their morphology; we found similar individuals within the contact zone of metasomatic rock, where diopside-chlorite veinlets up to 1 cm in thickness are observed in host antigorite serpentinite. Cavities filled by flattened diopside crystals (strong flattening is caused by the intensively developed first pinacoid) are observed in swells of these veinlets. The crystal length reaches 3-5 mm; these crystals are colorless and transparent. The forms are (Fig. 80e): pinacoids a{100}, c{001}, and n{-102}, and orthorhombic prisms m{110}, f{310}, u{111}, v{221}, ω {331}, o{411}. Striations due to oscillatory combinations are seen on the prismatic faces; vicinals are observed on the plane of the first pinacoid.

In addition, unusual individuals strongly flattened on [001] were found in this study. They occur in open fractures cutting gray dense diopside rodingite. No any other minerals are observed. Light green, opaque diopside individuals do not exceed 5–6 mm in size. These forms were observed: pinacoids y{101}, b{010}, and p{-101}, and orthorhombic prisms m{110}, g{210}, l{120}, μ {121}, τ {-112}, and s{-111} (Fig. 80f). Such unusual morphology results from crystal twinning on

80. Diopside crystals from rodingites of Bazhenovskoe deposit.

planes (100) and (010). Apparently, reentrant angles on the faces of the first and second pinacoids cause the individuals to be stronger developed in these directions.

Thus, the morphology of diopside crystals from rodingites of Bazhenovskiy ophiolite complex is diverse. In general, the following morphological types are identified: strongly flattened (on [100] and [001]), prismatic, flattenedprismatic, tapered, flattened-tapered, rod-like, and lath-like. According to the previous study and this one, a total of approximately 30 forms have been identified on individuals of Bazhenovskoe diopside. Twinning on [100] and [010] is recorded. Twins on the first pinacoid are the most abundant and individuals become pseudoorthorhombic which complicates the crystal habit. Twins on [010] are less abundant and this twinning does not cause changes in the crystal habit.

Compositionally, diopside ranges from pure $CaMgSi_2O_6$ to Fe-rich varieties (Table 4.4) to form a continuous solid solution series with hedenbergite, which is also reported from Bazhenovskoe rodingites. Along with the high Fe content, in some cases pyroxene has the high Cr (up to 1.7 wt. % Cr₂O₂) and Mn (up to 2.8 wt. % MnO) contents. The Cr-bearing diopside is bright green, whereas the Mn-bearing variety is light pink. In addition, the mineral frequently contains Al (up to 1.4 wt. % Al₂O₃) and Na (up to 0.6 wt. % Na₂O). Erokhin and Sokolov (2000) also studied diopside associated with wollastonite from rodingites. This pyroxene constantly contains Na (up to 0.2 wt. % $Na_{2}O$) and Mn (up to 0.7 wt. % MnO) (Table 4.5, anal. 1–3).

Erokhin (2006) examined diopside from a dike of rodingitized Ti-rich diorite. It was observed in both a rodingite and chlorite-serpentine rim. In the dike body, diopside occurs as equant grains of a few portions of mm in size among amphibole and in a saussurite aggregate. Microscopically, this pyroxene is distinguished by high birefringence, clear relief, and is colorless. The chemical

52

92. Vesuvianite crystals (up to 1.5 cm high) with serpentine. South open pit. Specimen: Alexey G. Levin.

91. Vesuvianite crystals from Bazhenovskoe deposit.

Two more types of crystals, dipyramidal (pencils) and short prismatic (viluitelike), were identified in Bazhenovskoe rodingites as a result of later investigation. The first variety fills fractures in metasomatic rocks and host serpentinites. The absence of pinacoidal faces is a characteristic feature of these individuals (Figs. 91f, g, h). They are faced by ditetragonal dipyramids s{131}, tetragonal dipyramids p{111} and o{101}, tetragonal prisms a{100} and m{110}, and ditetragonal prisms f{120}, d{310}, and w{430}. Prismatic faces are striated parallel to crystal elongation (Mineralogy..., 1996; Antonov, 2003).

The viluite-like individuals are found exclusively in cavities in massive vesuvianite (Erokhin, Shagalov, 1998; Antonov, 2003). Crystals with both simple (Fig. 91i) and complex (Fug. 91k) facing are reported. Individuals of the later generation sometimes overgrow them. The viluite-like crystals are poorly faced. They are formed by the pinacoid c{001}, ditetragonal dipyramid s{131}, tetragonal dipyramids $p\{111\}$ and $t\{331\}$, tetragonal prisms $a\{100\}$ and $m\{110\}$, and ditetragonal prism f{120}. Apparently, these crystals of vesuvianite are the earliest; they have strongly developed pinacoidal faces.

The vesuvianite crystals were reported from massive chromitite found as xenoliths in rodingites. Here they fill open fractures together with uvarovite and chlorite. The length of individuals of this dark green variety reaches 10 cm. They have a tapered dipyramidal habit and are faced by tetragonal dipyramids n{301} and

169. Complexly zoned **brucite** crust: cross section (polished plate). 20 x 10.5 cm. South open pit. Specimen: Alexey G. Levin.

170. Complexly zoned **brucite** crust similar to that in Fig. 169 but as section near-parallel to surface on which it overgrew (polished plate). 19 x 9 cm. South open pit. Specimen: Alexey G. Levin.

171. Crust of zoned prismatic **brucite** crystals. Image size 2.4 x 3.6 cm. Specimen: Vladimir A. Pelepenko #5378.

96

172. Druse of tabular and short-prismatic brucite crystals (blue color is caused by irradiation). 20 x 20 cm. Specimen: Oleg S. Bartenev.

spherulites (cross section). 14 x 4.5 cm.

In general, Bazhenovskoe brucite is very well known. It is one of the most famous minerals of the deposit in museums and collections. One of the best specimens of brucite from the deposit was found from Bazhenovskoe ultramafic rocks and studied in detail by Kurnakov and Chernykh (1926). Brucite is a rock-forming mineral of hydrothermally altered chrysotile serpentinite and in recrystallized rock, it occurs as large (up to 1-2 m) monomineralic segregations frequently within cavities filled by rhombohedral, prismatic, tabular, or lamellar crystals up